Catalase over‐expression protects dystrophic skeletal muscle
نویسندگان
چکیده
منابع مشابه
Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.
The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal mus...
متن کاملLong-Term Quercetin Dietary Enrichment Partially Protects Dystrophic Skeletal Muscle
Duchenne muscular dystrophy (DMD) results from a genetic lesion in the dystrophin gene and leads to progressive muscle damage. PGC-1α pathway activation improves muscle function and decreases histopathological injury. We hypothesized that mild disease found in the limb muscles of mdx mice may be responsive to quercetin-mediated protection of dystrophic muscle via PGC-1α pathway activation. To t...
متن کاملSERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models.
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca²⁺ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was ...
متن کاملMuscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice.
Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by the absence of functional dystrophin. Abnormal excitation-contraction (E-C) coupling has been reported in dystrophic muscle fibers from mdx mice, and alterations in E-C coupling components may occur as a direct result of dystrophin deficiency. We hypothesized that muscle-specific overexpression of insulin-growth factor-1 (...
متن کاملOverexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance.
Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCtheta in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2008
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.22.1_supplement.754.6